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Enantioselective Total Synthesis of (+)-Isolaurepinnacin 
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Red seaweeds of the genus Laurencia produce a wide variety 
of halogenated C15 acetogenins, which characteristically contain 
terminal enyne or bromoallene functionality.2 The majority of 
these metabolites are oxygen heterocycles, with five- and eight-
membered oxacycles occurring particularly widely.2 Isolaure-
pinnacin (I)3 and rogioloxepane A (2)4 are examples of the rarer 
class of C15 Laurencia metabolites that contain seven-membered 
oxacyclic (oxepane) rings.5 In this communication, we report 

Br Ci 

(+)-isolaurepinnacin (1) (+)-rogioloxepane A (2) 

the first total synthesis of a Laurencia acetogenin of the oxepane 
group.6 Our strategy was to form the m-2,7-disubstituted A4-
oxepene ring of 1 by an acetal-alkene cyclization.7 The defining 
reaction of the total synthesis of (+)-isolaurepinnacin recorded 
herein is the selective conversion of a (3-chloro mixed acetal (3) 
to an oxepene (4) (eq 1), a conversion that effectively deals with 
all of the structural and stereochemical issues posed by this total 
synthesis target.6d 
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The syntheses of the (3S,4S)-vinylsilane alcohol 9 and the 
(/?)-a-chloroacetal 13 precursors of the mixed acetal cyclization 
substrate 15 are summarized in Scheme I. Phenylsulfonylation 
of enantiopure epoxy alcohol 5,8~10 followed by regioselective 
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opening of the epoxy sulfonate derivative according to the 
procedure of Murai,11 provided bromohydrin 6 in 94% yield.12 

Conversion of 6 to the volatile bromoepoxide 7 was best 
accomplished in ether by treatment at low temperature with MeLi. 
Although this epoxide does not react cleanly with 2-(trimeth-
ylsilyl)-2-propenyl cuprates or silanes, it does afford the desired 
vinylsilane alcohol 9 in high yield upon reaction at low temperature 
with the allyltin reagent 8 in the presence of EtAlCU.13,14 

The (J?)-a-chloroacetal 13 was prepared from commercially 
available 2,2-dimethoxyethanol (10) by Swern oxidation followed 
by in situ reaction of glyoxal dimethyl acetal with 3-(triisopro-
pylsiloxy)propynyllithium to provide propargylic alcohol 11 in 
88% yield.15 Jones oxidation of this intermediate followed by 
enantioselective reduction16 of the derived ketone provided (S)-
11 (80% ee).17-" Enantiopure (S)-Il could be obtained from 
this material by chromatographic separation (and subsequent 
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cleavage) of the diastereomeric carbamates derived from (S)-
(-)-a-methylbenzyl isocyanate.20 Catalytic hydrogenation of 
enantiomerically pure (S)-Il then afforded enantiopure 12 in 
44% overall yield from racemic propargylic alcohol 11. Con­
version of 12 to the triflate derivative followed by reaction of this 
intermediate with (/J-Bu)4NCl provided the (/?)-a-chloroacetal 
13 in 71% yield.21 

The total synthesis of (-H)-isolaurepinnacin was efficiently 
completed from the optically active fragments 9 and 13 as 
summarized in Scheme II. Treatment of acetal 13 at -78 0C 
with Me2BBr, followed by removal of Me2B0Me under reduced 
pressure, provided the corresponding a-bromo ether 14.22 This 
crude intermediate was directly combined with alcohol 9 in the 
presence of AgOTf to afford the mixed acetal 15 in high yield.6d-23 

Cyclization of this polyfunctional intermediate was best accom­
plished in CH2Cl2 by reaction with 1.4 equiv of BCl3 at -78 -*• 
O 0C.6d After desilylation of the crude cyclization product, 
oxepene 17 was isolated in 90% overall yield from the fi-chlo-
roacetal. This remarkably selective conversion proceeds by way 
of the a-chloro ether intermediate 16,24 which can be detected 
(and isolated) at short reaction times. The (.E)-enyne side chain 
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was then developed by initial oxidation of 17 with the Dess-
Martin reagent,25 followed by direct reaction of the resulting 
aldehyde with ethynylmagnesium bromide to afford 18. Dehy­
dration of this intermediate under a variety of standard conditions 
was not stereoselective. However, dehydration of the hexacar-
bonyldicobalt complex of 18 proceeded with high (>24:1) (E) 
stereoselection.26 The optimal procedure was to initially convert 
18 to the corresponding hexacarbonyldicobalt complex, which 
upon subsequent reaction in CH2Cl2 with Tf2O afforded the 
hexacarbonyldicobalt complex of isolaurepinnacin. Decomplex-
ation of this intermediate with eerie ammonium nitrate provided 
(+)-isolaurepinnacin (1), contaminated with less than 4% of its 
(Z) stereoisomer, in 65% overall yield from 18. Synthetic 1 
displays 1H and 13C NMR and IR spectra that are indistin­
guishable from those of the natural isolate and showed the 
following optical properties: [a]25

D+0.6°, [a]25
546 + 1.2°, [a]25

405 
+3.2° (c = 1.4, CHCl3).

27 

The first total synthesis of (-f)-isolaurepinnacin has been 
achieved with high stereoselectivity in 12 steps and 15% overall 
yield from cw-2-penten-l -ol. This synthesis rigorously establishes 
the S configuration of 1 at C(13), which had previously been 
assigned on biosynthetic grounds, and corrects the rotation of 1 
to be dextrorotatory.28'29 Of particular note is the integrity of 
both bromine and chlorine functionalities during the Lewis acid-
promoted cyclization of mixed acetal 15; this conversion highlights 
the extraordinary selectivity that can be realized in acetal-alkene 
cyclizations. The formation of a single stereoisomer in this key 
conversion moreover demonstrates that chiral a-chlorooxocar-
benium ions are sufficiently configurationally stable to not 
epimerize during a favorable acetal-alkene cyclization. This 
observation suggests that other oxacyclic marine natural products 
containing common 1-haloalkyl side chains can be accessed in 
asymmetric fashion by Prins-type cyclizations of /3-haloacetals. 
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Desbromodeschlorooctahydroisolaurepinnacin prepared from synthetic (+)-l 
was dextrorotatory and, thus, in accord with the absolute configuration 
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